Performance of Novel IOL Power Calculation Formulas Incorporating Total Keratometry in Patients with Keratoconus

Eden Kimiagarov, BS¹; Harry Levine, BA, BS¹; Ethan Adre, BSE¹; Elizabeth A. Vanner, PhD¹; Rahul Tonk, MD, MBA¹

Affiliation: 1. Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.

The authors have no financial interest in the subject matter of this presentation.

Background/Purpose

- Keratoconus (KCN) is a non-inflammatory ectatic corneal disorder characterized by progressive corneal thinning and protrusion
- Intraocular lens (IOL) power calculation in KCN is unreliable due to:
 - Keratometry repeatability and accuracy
 - Anterior/posterior corneal relationship
 - Effective lens position prediction error
 - Corneal apex and visual axis inconsistency
- Novel IOL power calculation formulas may improve prediction error
- Literature is lacking in large with comparative studies among formulas
- Purpose:
 - Compare the accuracy of available IOL power calculation formulas in patients with KCN
 - Evaluate formula performance by KCN severity

Methods

- Retrospective study of 98 eyes of 70 individuals with KCN who underwent uncomplicated cataract surgery with IOL implantation at the Bascom Palmer Eye Institute Miami FL, between 12/1/2014 6/1/2021
 - Exclusion criteria:
 - Hx of refractive or intraocular surgery
 - Keratometry values >60D (formula limitations)
 - Concomitant surgeries
- Grouped by KCN severity using steep keratometry: mild (<48D), moderate (48-53D), and severe (53-60D)

Formulas Evaluated				
Standard Formulas	KCN-Specific Formulas			
SRK/T	Barrett True K v2.5			
Holladay 1	Barrett TK True K v2.5			
Barrett Universal II	Kane KCN			
Barrett TK Universal II	Modified Holladay 1-EKR65			

Demographics of Study Population

Parameter	N=70			
Age (years), mean±SD	63.74±9.9			
Sex, N (%)				
Male	32 (45.7%)			
Female	38 (54.3%)			
Race/Ethnicity, N (%)				
White	61 (87.1%)			
Black or African/American	6 (8.6%)			
Hispanic, any race	40 (57.1%)			
Mean follow up time (months), mean±SD	2.1±1.7			
Keratoconus Severity, n (%)	N=98			
Mild (<48D)	53 (54.1%)			
Moderate (48-53D)	30 (30.6%)			
Severe (53-60D)	15 (15.3%)			

Baseline Corneal Measurements

Measurements, mean ± SD	N=98			
Axial length (mm)	25.22 ± 2.28			
Flat Keratometry (D)	45.35 ± 3.45			
Steep Keratometry (D)	48.36 ± 3.99			
Mean K (D)	46.85 ± 3.53			
Corneal thickness (mm)	509.15 ± 39.82			
Lens thickness (mm)	4.32 ± 0.36			
Pre-operative Best corrected visual acuity (BCVA)	0.12 (0.15)			
Pre-operative spherical equivalent (D)	-5.61 ± 7.34			

- •BCVA improved from 0.43±0.42 to 0.12±0.15 after surgery(p<0.0001)
- •Spherical equivalent improved from -5.61±7.34 D to -0.63±1.76 D after surgery (p<0.0001)

Barrett(TK)True K had the Lowest MAE Across All KCN severities

KCN Severities	All Severities		Mild		Mod/Severe	
Formulas	MAE	ME	MAE	ME	MAE	ME
Barrett TK True K v2.5	0.67(0.81)	-0.08(1.06)	0.44(0.36)	-0.01(0.58)	1.03(1.15)	-0.19(1.57)
Barrett TK Universal II	0.76(0.83)	0.24(1.11)	0.49(0.41)	0.24(0.6)	1.22(1.16)	0.25(1.71)
Kane KCN	0.85(0.85)	-0.03(1.2)	0.58(0.57)	0(0.82)	1.16(1.01)	-0.07(1.55)
Modified Holladay 1 with EKR	0.88(0.71)	-0.29(1.11)	0.64(0.67)	-0.3(0.89)	1.19(0.67)	-0.27(1.39)
Barrett True K v2.5	0.95(0.93)	-0.01(1.33)	0.61(0.58)	-0.29(0.79)	1.35(1.1)	0.32(1.72)
Barrett Universal II	1.04(1.11)	0.41(1.47)	0.56(0.57)	0.03(0.8)	1.6(1.31)	0.84(1.9)
SRK/T	1.14(1.44)	0.23(1.82)	0.51(0.58)	-0.09(0.77)	1.96(1.78)	0.64(2.58)
Holladay 1	1.19(1.43)	0.64(1.75)	0.54(0.55)	0.17(0.75)	2.16(1.77)	1.34(2.47)

^{*}MAE=Mean Absolute Error; ME= Mean Error

All Formulas had Higher MAE with Increased KCN Severity

Holladay 1, SRK/T, and Barrett Universal II performed the worst in individuals with moderate/severe KCN

Mean Absolute Value of Errors by Severity Level

Mean Error Shows Refractive Surprise

All Formulas Performed Similarly in Patients with Mild KCN

KCN Specific Formulas Performed Better than Standard Formulas in Individuals with Moderate/Severe KCN

Barrett TK Universal
II performed best
among the standard
formulas

Summary/Conclusions

- 1. All formulas behaved similarly in mild KCN
- 2. Formulas used in moderate/severe KCN had a **higher MAE** than in mild KCN across all formulas, particularly the SRK/T, Holladay 1, and Barrett Universal II
- 3. In moderate/severe KCN the SRK/T, Holladay 1, and Barrett Universal II resulted in a large (>2D) surprise in over 25% of eyes
- 4. Exercise caution when aiming myopic for severe KCN, as not all formulas may require it
- 5. Barrett TK True K v2.5, Barrett TK Universal II, and Kane KCN had the lowest MAE among all of the formulas in the all severities group
- Formulas using total keratometry may offer the most reliable outcomes in patients with KCN, regardless of severity.
- IOL power calculation in patients with KCN remains challenging. Total keratometry may improve refractive outcomes in these cases.
- Further research is required to evaluate the performance of IOL formulas in KCN, especially in patients with severe disease.

References

- 1. Rabinowitz YS. Keratoconus. Survey of ophthalmology. 1998;42(4):297-319.
- 2. Kymes SM, Walline JJ, Zadnik K, Gordon MO, Group CLEoKS. Quality of life in keratoconus. American journal of ophthalmology. 2004;138(4):527-535.
- 3. Hashemi H, Heydarian S, Hooshmand E, et al. The prevalence and risk factors for keratoconus: a systematic review and meta-analysis. Cornea. 2020;39(2):263-270.
- 4. Ortman JM, Velkoff VA, Hogan H. An aging nation: the older population in the United States. 2014.
- 5. Thebpatiphat N, Hammersmith KM, Rapuano CJ, Ayres BD, Cohen EJ. Cataract surgery in keratoconus. Eye & contact lens. 2007;33(5):244-246.
- 6. Bozorg S, Pineda R. Cataract and keratoconus: minimizing complications in intraocular lens calculations. Paper presented at: Seminars in ophthalmology2014.
- 7. Kamiya K, Iijima K, Nobuyuki S, et al. Predictability of intraocular lens power calculation for cataract with keratoconus: a multicenter study. *Scientific reports*. 2018;8(1):1-7.
- 8. Watson MP, Anand S, Bhogal M, et al. Cataract surgery outcome in eyes with keratoconus. British Journal of Ophthalmology. 2014;98(3):361-364.
- 9. Leccisotti A. Refractive lens exchange in keratoconus. *Journal of Cataract & Refractive Surgery.* 2006;32(5):742-746.
- 10. Fredriksson A, Behndig A. Measurement centration and zone diameter in anterior, posterior and total corneal astigmatism in keratoconus. *Acta ophthalmologica*. 2017;95(8):826-833.
- 11. Kane JX, Connell B, Yip H, et al. Accuracy of intraocular lens power formulas modified for patients with keratoconus. *Ophthalmology.* 2020;127(8):1037-1042.
- 12. Savini G, Abbate R, Hoffer KJ, et al. Intraocular lens power calculation in eyes with keratoconus. Journal of Cataract & Refractive Surgery. 2019;45(5):576-581.
- 13. Hashemi H, Heidarian S, Seyedian MA, Yekta A, Khabazkhoob M. Evaluation of the results of using toric IOL in the cataract surgery of keratoconus patients. *Eye & contact lens*. 2015;41(6):354-358.
- 14. Connell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ open ophthalmology. 2019;4(1):e000251.
- 15. Saglik A, Celik H. Comparison of Holladay equivalent keratometry readings and anterior corneal surface keratometry measurements in keratoconus. *International ophthalmology.* 2019;39(7):1501-1509.

