Contact Lens Use and Meibomian Gland Dysfunction in the Era of Meibography

Steven Carter MD, Urmi Mehta DO, Param Bhatter MD, Kaylee White MD, Kailey Marshall OD, Priyanka Chaadva MD, Aman Mittal MD, Marjan Farid MD

Correct Gavin Herbert Eye Institute

Financial Disclosures

No relevant financial disclosures

Background

- Meibomian gland disease (MGD) is a major risk factor for chronic dry eye disease (DED) with a reported prevalence of 3.5 – 70% and contributes to 60% of all cases of DED¹
- Dry eye estimated to affect the quality of life of 10—30% of the human population²
- Changes to meibomian gland morphology associated with MGD include gland dropout, shortening, truncation, distortion, and dilation
 UCI Health

Meibography

- First described in 1977
- Non contact infrared meibography has seen increased utilization over the past decade
- Meiboscore demonstrated to have good within reader and between reader reliability³
- Meibomian gland disease has been associated with prior contact lens use⁴
 - Shortening and dropout of meibomian glands
 - Evidence is inconclusive in current literature, with a few studies demonstrating more meibomian gland loss in contact lens wearers compared to non-contact lens users

C Gavin Herbert Eye Institute

Duration of contact lens use may be associated with meibomian gland dropout on meibography

Purpose & Methods

Purpose: To understand the association of contact lens use with meibomian gland dysfunction and associated changes on meibography.

Methods: A total of 203 patients (406 eyes) were given a survey regarding their frequency and type of contact lens (CTL) use. 189 patients had images that could be scored. Mean age was 67 years old. 23% were male, and 77% female. Their meibomian glands were imaged using Lipiview (*Johnson & Johnson, Inc.*) and scored with "meiboscore."³

Prior CTL Use	Type of CTL	Hours per day of CTL use	Total years of CTL use
Yes (n=78) No (n=111)	Scleral (n=4) Soft (n=49) RGP (n=25)	<2 (n=116) 3-6 (n=9) 7-9 (n=15) 10-14 (n=33) >15 (n=12)	1-5 (n=16) 6-10 (n=13) 11-20 (n=15) >20 (n=31)

Meiboscores³

UCI Health

Meiboscore by Age

Meiboscores for CTL Use vs No CTL Use

Meiboscores by Type of CTL Worn

Meiboscore by Soft CTL Change Frequency

Meiboscore by Hours Per Day of CTL Use

Meiboscore by Years of CTL Use

Discussion

- CTL users do not demonstrate more meibomian gland loss than those who do not use CTL
- The type of CTL used, change frequency, and hours of use per day do not seem to have an impact on meibomian gland dropout on meibography
- Chronic CTL users (more than 20 years) appear to suffer from more meibomian gland dropout than those who have used contact lenses for less time

UCI Health

Thank you!

UCI Health

References

- 1. Chan, et. al. Update on the association between dry eye disease and meibomian gland dysfunction. Hong Kong Med J 2019;25(1):38-47.
- 2. Alshamrani, et. Al. Prevalence and Risk Factors of Dry Eye Symptoms in a Saudi Arabian Population. Middle East Afr J Ophthalmol 2017;24(2):67-73.
- 3. Arita R, Itoh K, Inoue K, Amano S. Noncontact Infrared Meibography to Document Age-Related Changes of the Meibomian Glands in a Normal Population. Ophthalmology 2008;115:911–915.
- 4. Arita R, Fukuoka S, Morishige N. Meibomian Gland Dysfunction and Contact Lens Discomfort. Eye & Contact Lens 2017;43:17-22.
- 5. Matsumoto Y, et. al. The evaluation of the treatment response in obstructive meibomian gland disease by in vivo laser confocal microscopy. Graefes Arch Clin Exp Ophthalmol 2009;247:821–829.
- 6. Call C, et. al. In vivo examination of meibomian gland morphology in patients with facial nerve palsy using infrared meibography. Ophthal Plast Reconst Surg 2012;28:396–400.
- 7. Psychometric properties and validation of the Standard Patient Evaluation of Eye Dryness Questionnaire. Ngo W, Situ P, Keir N, Korb D, Blackie C, & Simpson T. Cornea. 2013 Sep; 32(9):1204-10.
- 8. Nichols JJ, Berntsen DA, Mitchell GL, Nichols KK. An assessment of grading scales for meibography images. Cornea 2005;24:382e8.
- 9. Robin JB, Jester JV, Nobe J, Nicolaides N, Smith RE. In vivo transillumination biomicroscopy and photography of meibomian gland dysfunction. A clinical study. Ophthalmology 1985;92:1423e6.
- 10. Mathers WD, Daley T, Verdick R. Video imaging of the meibomian gland. Arch Ophthalmol 1994;112:448e9.
- 11. Srinivasan S, Menzies K, Sorbara L, Jones L. Infrared imaging of meibomian gland structure using a novel keratograph. Optom Vis Sci 2012;89:788e94.

UCI Health