A Randomized, Prospective Controlled, Phase II Study of a Topical Anti-TNFα Agent with Biomarkers in the Treatment of Ocular Discomfort in Severe Dry Eye Disease

Eric Donnenfeld, MD On behalf of the OCS-02/LME636 DED PoC Phase 2 trial investigators

Commercial Relationships Disclosure: Eric Donnenfeld, M.D.

I am a consultant for:

- Acufocus
- Allegro
- Allergan
- Alcon
- Avedro
- Avellino Labs
- Bausch & Lomb
- BVI
- Blephex
- CorneaGen
- CRST
- Dompe
- Elenza
- EyePoint Pharma
- Foresight
- Glaukos
- Icon Biosciences
- Johnson & Johnson

- Kala
- Katena
- Lacripen
- Lensgen
- Mati Pharmaceuticals
- MDBackline
- Merck
- Mynosis
- Nanowafer
- Novabay
- Novaliq
- Novartis
- Ocuhub
- Ocular Innovations
- Ocular Therapeutics
- Oculis
- Omega Ophthalmics
- Omeros

- Orasis
- Oyster Point
- Pogotec
- PRN
- ReTear
- RPS
- Shire
- Strathspey Crown
- Surface
- SUN
- Tearlab
- TLC Laser Centers
- TrueVision
- Versant Ventures
- Visionary Ventures
- Zeiss

$TNF\alpha$ is involved in dry eye disease

Inflammatory infiltrates in conjunctiva and increased tear TNFα levels

Inflammation in DED tissue

 CD4 T cell infiltrates in conjunctiva of DED patients¹

$TNF\alpha$ is involved

- Increased TNFα and IL-6 concentrations in tears and conjunctiva of DED patients²
- TNF antagonists are efficacious in animal models of DED³

Need for local delivery

 Systemic treatment of Sjögren patients with TNFα antagonists was not efficacious⁴ (may be due to insufficient drug levels on ocular surface)

Anti-CD4 staining of conjunctiva1

OCS-02* anti-inflammatory MoA aligns with DED mechanism of disease

Developed as an eye drop to to block $\mathsf{TNF}\alpha$

- OCS-02 is a first-in-class humanized antibody fragment (scFv) that inhibits the inflammatory cytokine TNFα
- It is formulated as an eye drop. It penetrates the conjunctiva and anterior chamber
- OCS-02 binds to human TNFα with very high affinity
- It binds soluble as well as transmembrane TNFα
- In DED, the anti-inflammatory effect of TNFα inhibition has the potential to persistently relieve ocular discomfort, with good tolerability and a rapid onset of action

1st generation anti-TNFα scFv: ESBA105 improved ocular discomfort in DED

Positive mean change from baseline and responder analysis (post-hoc)

A) Mean change from baseline

B) Responder analysis

Four PoC clinical trials have been conducted with the precursor ESBA105: healthy volunteers, PK, AAU and DED

Potencies of TNF α inhibitors

OCS-02 has greater potency than adalimumab and infliximab*

TNFα inhibitor	IC₅₀ (ng/mL)	IC₅₀ (pM)	Relative potency to OCS-02 (IC50 of OCS-02 (pM)/IC50 of inhibitor (pM)
OCS-02	1.2	44 ± 4	1.0
ESBA105	12.9	492 ± 41	0.09
Etanercept	1.8	12 ± 1	3.69
Certolizumab pegol	2.1	42 ± 3	1.06
Adalimumab	9.2	61 ± 4	0.73
Infliximab	15	100 ± 5	0.44
Golimumab	3.2	21 ± 2	2.11

- *as measured by molar concentration
- Potencies of TNFα inhibitors in inhibiting TNFα-induced apoptosis in L929 cells
- ESBA105 is a predecessor to OCS-02 that binds primate and human TNFa. OCS-02 binds to human TNFa but not to TNFa from any of the other species

OCS-02 PoC Phase 2 trial in dry eye disease

Study design focused on reducing the variability of treatment results

Primary endpoint: global ocular discomfort score at Day 29 (composite of frequency and severity)
Secondary endpoint: percentage of patients with improvement in global ocular discomfort score >20
Exploratory Pharmacogenetic sub study

*VAS: visual analog scale

OCS-02 PoC Phase 2 efficacy results

Change from baseline in global ocular discomfort score was statistically significant

* High responders defined as the subjects who presented with > 20 points improvement on the global ocular discomfort score

Safety

No meaningful safety clinical findings

- The most common AEs in the OCS-02 group were dry eye and eye pruritus:
 - Each reported in 2 (2.9%) and 0 (0%) in the vehicle group
- Vehicle: 1 patient had an SAE (pneumonia)
- OCS-02: 1 patient discontinued treatment due to conjunctivitis
- Mean changes from baseline in IOP by treatment group were minimal
 - –0.3 mmHg for OCS-02 and +0.2 mmHg for Vehicle at treatment day 43 and similar in all study arms

Ocular TEAEs*

Severity (Any event)	OCS-02 n=69 (%)	Vehicle n=65 (%)
Mild	7 (10.1)	2 (3.1)
Moderate	2 (2.9)	0 (0.0)
Severe	0 (0.0)	0 (0.0)

Safety Analysis Set

*Treatmetn Emergent Adverse Events

OCS-02 PoC Phase 2 results in dry eye

Some patients responded dramatically to OCS-02

A pre-planned pharmacogenetic sub study was used to elucidate the high response to treatment

• It required a separate informed consent signed at the same time as the main informed consent for the primary study

SNP screening for global ocular discomfort score

Patients with identified SNP did not show any effect on response to vehicle, regardless of genotype

Treatment	Genotype	LS Mean change	SE	(90% CI)	Nominal p-value
OCS-02	CC (n=4)	-29.48	6.52	(-40.34, -18.61)	
	CT (n=25)	-0.09	3.52	(-6.01, 5.83)	< 0.0001
	TT (n=14)	-3.90	3.51	(-9.79, 1.99)	
Vehicle	CC (n=8)	-1.08	3.74	(-7.32, 5.15)	
	CT (n=19)	-4.05	2.82	(-8.77, 0.67)	0.9863
	TT (n=16)	-4.03	2.80	(-8.71, 0.65)	

Patients treated with OCS-02 or vehicle for 29 day. Per protocol analysis set

- The polymorphism variant identified is determined by the single change from the reference nucleotide T to C.
- The prevalence of CC (each C allele inherited from a parent) is 19.9% and 12.7% in Caucasian and African, respectively, as reported in 1000 human genome database.
 - In this study, the prevalence of CC was 11.5% (11/96) and 12.7% (2/19) in Caucasian and African, respectively

Genetic Biomarker is associated with soluble TNFR1

sTNFR1 is associated with other human inflammatory/ autoimmune diseases and may help modulate TNFα activity in DED

- rs1800693 causes exon-6 skipping^{*} and results in soluble TNFR1 (sTNFR1) and increased TNFα responses
- Soluble TNFR1 (sTNFR1) is constitutively released by TNFα -converting enzyme, and its level increases in the course of various human inflammatory/autoimmune diseases

Tear sTNFR1 increased in Sjögren syndrome and GVHD
Intraocular sTNFR1 increased in uveitis

- In contrast, periodic syndrome (an autoinflammatory disorder) is caused by autosomaldominant mutations in the TNFR1 gene that prevents production of sTNFR1
- Mechanistic studies: sTNFR1 may act as physiological attenuator of TNFα activity or may function as a buffer system to enhance the effect of TNFα or may increase signaling to TNFα through intracellular localization

Source: Gregory et al. Nature. 2012; Housley et al. Sci Transl Med. 2015; Sakimoto et al. IOVS. 2014; Sugita et al. IOVS. 2007; McDermott et al. Cell. 1999; Van et al. PNAS. 1992; Aderka et al. J. Exp. Med. 1992

* part of the gene sequence is spliced out by mRNA and consequently the protein generated is different than the original

Conclusions

Positive PoC Phase 2 in DED and a potential genetic biomarker for OCS-02 response identified

- Primary endpoint: OCS-02 showed a statistically significant change from baseline in global ocular discomfort score
- In addition, there was a dramatic response to treatment in a subset of patients
- Among the 8 SNPs tested, in the pre specificed pharmacogenetics sub study, one SNP in the TNFR1 gene showed significant effect on the response to OCS-02
 - Genotype effect on symptomatic improvement existed in the patients who were treated with OCS-02 only but not in those who were treated with vehicle
 - Patients with CC genotype tended to have larger improvement than those with CT or TT genotypes.
- Biological mechanism underlying the pharmacogenetic finding is being further explored

OCS-02, a novel topical anti-TNF α has demonstrated statistically significant effect in symptoms of DED. The the role of a genetic variant in the response to treatment will be further evaluated

Thank you

OCS-o2 DED PoC Phase 2 Trial Principal Investigators, Study Team and Participants

- Marc Abrams
- James Branch
- William Christie
- Charles Crane
- Jung Dao
- Michael Endl
- Asra Firozvi
- Robert Foerster
- Ronald Frenkel
- Gary Jerkins
- Edward Koo
- Norman Liu
- Jodi Luchs
- Joseph Martel
- Eugene McLaurin
- Edward Meier

- Andrew Moyes
- Matthew Paul
- James Peace
- Allison Rand
- Steven Rauchman
- Kenneth Sall
- Michael Sheety
- Philip Shettle
- Blake Simmons
- Stephen Smith
- Stacy Smith
- Matthew Swanic
- Navin Tekwani
- Michael Tran
- David Wirta