EARLY CLINICAL OUTCOMES OF A POST-OPERATIVE ADJUSTABLE INTRAOCULAR LENS

Presenting Author: Joseph Ling, M.D.

Coauthors: Andrew Yazji, Shamik Bafna, M.D., William Wiley, M.D., Kayla Karpuk, O.D.

DISCLOSURES

- Joseph Ling: No relevant financial interests
- Andrew Yazji: No relevant financial interests
- Shamik Bafna: AcuFocus, A; Alcon, A; Beaver-Visitec, A; Carl Zeis Mediteer, A; CorneaGen, A; CXL Ophthalmics, R; CXL USA, D; Imprimis, B; Ocular Therapeutix, D; Presbia, D; ReVision Optics, D; RxSight, D; Shire, B, Sight Sciences, A
- William Wiley: Acufocus, A; Alcon, B; Allergan, D; AMO, B, D; ArcScan, A; Calhoun, D; Clarity, R; CorneaGen, A; Equinox, R; Glaukos, A; Imprimis, P; J&J, A; New World Medical, A; New World Medical, A; Omega, R, A; Revision, B; RxSight, R, B, D; Zeiss, A
- Kayla Karpuk: No relevant financial interests

LIGHT ADJUSTABLE LENS

Approved for patients with pre-existing astigmatism of 0.75 D or more who are undergoing cataract surgery

OPTIC BODY

- Photo-reactive UV absorbing silicone
- Biconvex
- Anterior surface rounded edge
- Posterior surface squared edge
- 6-mm diameter

HAPTICS

- Blue core polymethylmethacrylate (PMMA) monofilament
- Modified 'C'
- Haptic angle 10°
- I3mm LAL total diameter

HOW IT WORKS

Standard Cataract Implant Procedure Residual Refractive Error is Determined Using Standard Phoropter Refractive Error is Entered Into Light Delivery Device

PURPOSE

To evaluate the targeted refractive and visual outcomes achieved after implantation and adjustment of the Light Adjustable Lens after cataract surgery.

METHODS

• **Retrospective chart review**

• 248 eyes undergoing cataract extraction with implantation of the LAL

• Primary Outcome Measures:

- Uncorrected visual acuity (UCVA)
 - Measured in eyes corrected for distance
 - Measured in eyes corrected for near
- Best corrected visual acuity (BCVA)
- Percentage of patients with manifest refraction spherical equivalent (MRSE) within ±0.25D, ±0.5D, and ±1.0D of refractive target
- Data was collected following final postoperative adjustment with the light delivery device (LDD), 3 months postoperatively

Patient Demographics (N=248)	
Male	99 (40%)
Female	149 (60%)
Mean Age	66 years

DISTANCE UCVA FOLLOWING LOCK-IN TREATMENT (N=160)

NEAR UCVA FOLLOWING LOCK-IN TREATMENT (N=79)

MRSE RELATIVE TO PLANO REFRACTIVE TARGET FOLLOWING LOCK-IN TREATMENT (N=160)

MRSE RELATIVE TO NEAR REFRACTIVE TARGET FOLLOWING LOCK-IN TREATMENT (N=79)

AVERAGE MRSE

- Average MRSE for distance target eyes was -0.354 ± 0.724 D, deviating on average -0.217 ± 0.595 D from target.
- Average MRSE for near target eyes was -1.349 ± 1.021 D, deviating on average -0.072 ± 0.893 D from target.

POST-LOCK IN RESULTS

- After final postoperative adjustment with the LDD:
 - Mean MRSE to target refraction: -0.35 D
 - 80.4% of eyes had BCVA of 20/20 or better
 - No eyes had loss of BCVA or any complications

REFRACTIVE TARGET

• The final refraction for patients prior to lock-in is typically secondary to the patient's satisfaction with the outcome. If the patient is satisfied with the vision, and the refraction is close to plano, then lock-in can proceed.

CONCLUSION

The LAL provides excellent visual and refractive outcomes in patients wanting to achieve targeted distance or near vision with a reduced dependency on glasses.