

Alanna Nattis DO, FAAO¹

Eric Rosenberg DO, MSE¹

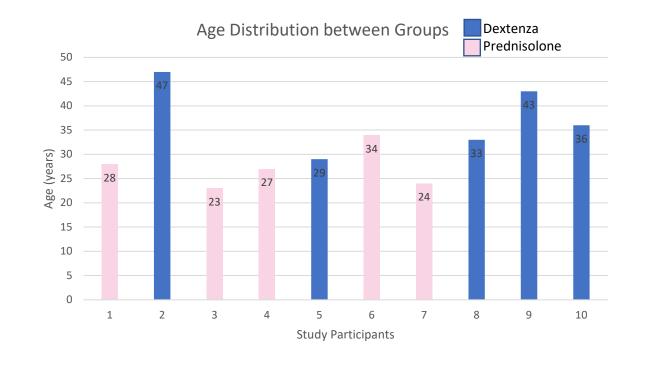
Financial Disclosures

- Alanna Nattis DO, FAAO: Alcon (consultant, research), Glaukos (research), Novartis (consultant) Ocular Therapeutix (research), Sight Sciences (consultant), Tarsus (consultant)
- Eric Rosenberg DO, MSE: Alcon (consultant, research), Ocular Therapeutix (consultant) Sight Sciences (consultant), Zeiss (consultant, research), Tarsus (consultant), Eyevance (consultant), Omeros (consultant)

This study was sponsored by an educational grant from Ocular Therapeutix

Purpose

- There is no standard post-crosslinking (CXL) regimen for pain and inflammation.
- In addition to topical steroid, some prescribe oral narcotics due to severe pain that may occur.
- This study compared post-CXL pain scores between patients receiving a tapered topical steroid (*Prednisolone Acetate 1%*) over 1-month post-CXL vs. an intracanalicular dexamethasone insert (*Dextenza*, Ocular Therapeutix, Bedford MA)


Methods/Study Design

- Prospective, randomized study
- Ten patients (20 eyes) enrolled
 - Bilateral, same-day epithelium-off CXL (*Dresden Protocol*)
 - 50% randomized into a post-CXL 28-day topical tapering steroid regimen
 - QID x 1 week, TID x 1 week, BID x 1 week, QDx 1 week
 - 50% randomized into the intracanalicular insert group
 - Both groups used topical fluroquinolone eye drop QID x 10 days
 - All patients were evaluated for pain scores following standard bilateral epithelium-off CXL on postoperative day(POD) 1, POD-3, POD4-7, postoperative week (POW)-1, POW2, POW3 and POW4.
 - Rate of re-epithelialization, need for 'rescue' pain medication, and ease of postoperative regimen was assessed between groups.

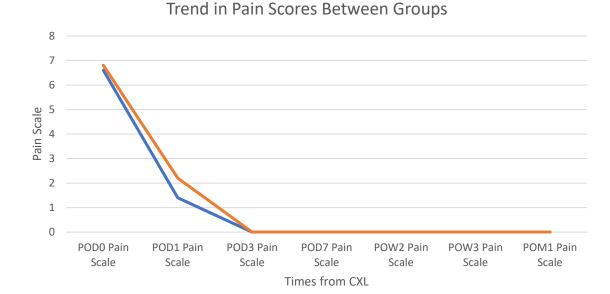
Demographics/Baseline Data

	Control (Prednisolone)	Dextenza	
Sex (%M v F)	7M (70%), 3F (30%)		
Mean Age	32.4 ± 7.49 (23-47)		
Mean Baseline BCVA	20/40 (20/20 - 20/100)	20/40 (20/25 – 20/70)	

 No statistical difference between sex and whether or not patient received Dextenza or Prednisolone (z-score, p=0.329)

Results: Trend BCVA, CCT

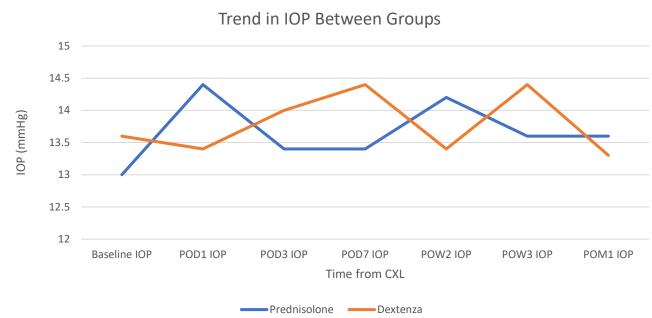
	Prednisolone	Dextenza
Baseline BCVA	20/40 (20/20 - 20/100)	20/40 (20/25 - 20/70)
POM1 BCVA	20/40 (20/30 - 20/70)	20/30 (20/25 - 20/70)
Baseline CCT (μm)	504.5 ± 30.1 (462 - 569)	528.4 ± 40.9 (466 - 579)
POM1 CCT (μm)	471.8 ± 34.02 (425 -531)	476.5 ± 48.04 (412-558)


- No significant difference between BCVA at POM1 (t-test, p=0.380) and whether the patient received Dextenza or Prednisolone
- No significant change in baseline BCVA and POM1 BCVA
- No statistically significant change between baseline CCT and POM1 CCT

Results: Trend in Pain Scale

	Prednisolone	Dextenza
POD0 Pain Scale	6.6 ± 2.15 (4-10)	$6.8 \pm 2.04 (4 - 10)$
POD1 Pain Scale	1.4 ± 0.49 (1-2)	2.2 ± 1.47 (1-5)
POD3 Pain Scale	0	0
POD7 Pain Scale	0	0
POW2 Pain Scale	0	0
POW3 Pain Scale	0	0
POM1 Pain Scale	0	0

 No significant difference between groups for pain scale at POD0 (t-test, p=0.842) and POD1 (p=0.139), nor in use of 'rescue meds'

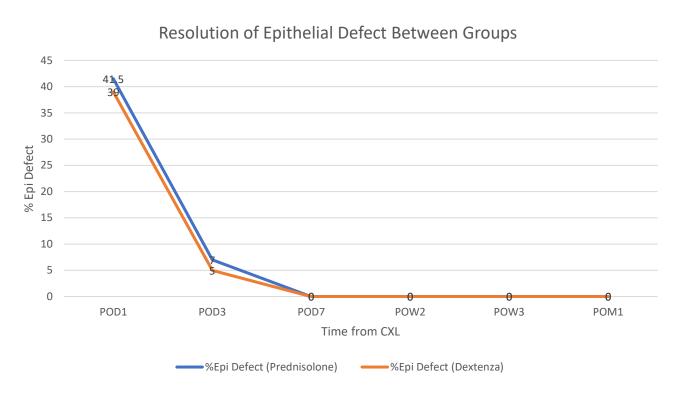

Prednisolone ——Dextenza

POD =postoperative day, numbers in parentheses represent range of values

Results: Trend in IOP

	Prednisolone	Dextenza
Baseline IOP	13 ± 1.788 (11 - 16)	13.6 ± 2.3 (12 -18)
POD1 IOP	14.4 ± 1.02 (14 - 16)	13.4 ± 1.2 (12-15)
POD3 IOP	13.4 <u>+</u> 2.15 (10-16)	14 ± 1.26 (12 - 15)
POD7 IOP	13.4 <u>+</u> 1.96 (10-16)	14.4 ± 2.58 (12-19)
POW2 IOP	14.2 <u>+</u> 0.75 (13-15)	13.4 ± 1.36 (11-15)
POW3 IOP	13.6 ± 1.02 (12-15)	14.4 ± 2.06 (12-18)
POM1 IOP	13.6 ± 1.02 (12-15)	13.3 ± 2.37 (10-16)

- No significant difference in baseline IOP between groups (t-test, p=0.822)
- No significant difference in IOP between groups across all time points:
 - POD1: *p=0.073*
 - POD3: *p=0.480*
 - POD7: *p=0.366*
 - POW2: *p*= 0.139
 - POW3: *p=0.310*
 - POM1: *p=0.731*


POD =postoperative day, IOP = intraocular pressure, numbers in parentheses represent range of values

Results: Trend Epithelial Defect Resolution

	POD1	POD3	POD7	POW2	POW3	POM1
%Epithelial Defect (Prednisolone)	41.5 ± 3.9 (35- 45)	7 ± 4 (0-10)	0	0	0	0
%Epithelial Defect (Dextenza)	39 ± 5.8 (30-45)	5 ± 3.16 (0-10)	0	0	0	0

- No significant difference between groups and rate of epi

defect resolution at POD1 (t-test, p=0.299) and POD3 (p=0.255)

Results: Ease of PO Medication Questionnaire

Question	Prednisolone	Dextenza
1. Were directions regarding eye drop use post-CXL easy to		
follow?	100% yes	100% yes
2. Was it cumbersome to use		
eye drops for more than 10		_
days?	100% no	n/a
3. Was it difficult to		
remember to use		
postoperative drops?	100% no	100% no

Discussion

- Our results demonstrate that utilizing a dexamethasone intracanalicular insert at the time of CXL rather than prescribing a month-long tapering dose of prednisolone is **safe** and **efficacious**.
- No patients had any adverse events in relation to dexamethasone intracanalicular insertion, and rate of re-epithelialization was similar between groups.
- Our results support the use of a dexamethasone intracanalicular insert post-CXL patients. This can help improve compliance with postoperative eye drop instructions and even comfort.

Thank you!

References

- Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319
- Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol. 1984;28:293–322
- Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7
- Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE. Biomechanical evidence of the distribution of cross-links in corneastreated with riboflavin and ultraviolet A light. J Cataract Refract Surg. 2006;32:279–83
- Hoyer A, Raiskup-Wolf F, Spörl E, Pillunat LE. Collagen cross-linking with riboflavin and UVA light in keratoconus. Results from Dresden. Ophthalmologe. 2009;106:133–40
- Wollensak G, Spörl E, Seiler T. Treatment of keratoconus by collagen cross linking. Ophthalmologe. 2003;100:44–9
- Snibson GR. Collagen cross-linking: A new treatment paradigm in corneal disease A review. Clin Experiment Ophthalmol. 2010;38:141–53
- Peyman, Alireza et al. Collagen cross-linking effect on progressive keratoconus in patients younger than 18 years of age: A clinical trial. Advanced biomedical research. 2015; 4(245). doi:10.4103/2277-9175.170240
- Wong-Baker FACES History. https://wongbakerfaces.org/us/wong-baker-faces-history/
- Brien Holden Vision Institute Grading Scales. https://contactlensupdate.com/2012/11/20/brien-holden-vision-institute-grading-scales/
- Ghanem VC, Ghanem RC, de Oliveira R. Postoperative Pain after Corneal Collagen Cross-linking. Cornea. 2013; 32(1): 20-4. Doi:10.1097/ICO.0b013e31824d6fe3
- Raiksup F. Post-operative management of corneal crosslinking patients. EyeWorld. 2013. https://www.eyeworld.org/article-postoperative-management-of-corneal
- Zarei-Ghanavati S, Jafarpour S, Radyn-Majd A, Hosseinikhah-Manshadi H. Evaluation of early postoperative ocular pain after photorefractive keratectomy and corneal crosslinking. Journal of Cataract and Refractive Surgery. 2018;44(5): 566-570
- Serna-Ojeda J, Santana-Cruz O, Quiroz-Casian N, Gonzalez-Mendoza E, Mercado-Orozco J, Navas A, Lichtinger A, Graue-Hernandez E. Pain Management in Corneal Collagen Crosslinking for Keratoconus: A Comparative Case Series. Journal of Ocular Pharmacology and Therapeutics. 2019; 35(6). https://doi.org/10.1089/jop2019.0021
- Kocluk Y, Cetinkaya S, Sukgen E, Gunay M, Mete A. Comparing the effects of two different contact lenses on corneal re-epithelialization after corneal collagen cross-linking. Pak J Med Sci. 2017; 33(3): 680-685