Depth-Resolved Corneal Biomechanical Changes Measured via OCE following CXL

Tanner J. Ferguson Srinidhi Singuri Sanjai Jalaj Matthew R. Ford Vinicius S. DeStefano Ibrahim Seven William J. Dupps, Jr.

Financial Disclosures

- Matthew W. Ford patent held by Cleveland Clinic related to OCT elastography (OCE)
- William J. Dupps patent held by Cleveland Clinic related to OCT elastography (OCE), Consultant (Alcon, Glaukos)

Background

- Underlying biomechanical abnormalities are thought to be a major contributor to development of corneal ectasia eg, KCN or post-LASIK ectasia
- Current imaging technologies are limited in their ability to evaluate depthdependent biomechanical properties of the cornea
- Optical coherence elastography (OCE)
 - Employs swept-source OCT to capture images while applying an axial, applanation-like contact with the corneal surface
 - Permits characterization of spatial depth-dependent biomechanical properties

- Prior study used OCE in live human subjects of both normal and KC eyes
- Demonstrated that patients with KC have a selective weakening of the anterior stroma – finding that may serve as valuable marker for screening

tvst

Article

Depth-Dependent Corneal Biomechanical Properties in Normal and Keratoconic Subjects by Optical Coherence Elastography

Vinicius S. De Stefano^{1,2}, Matthew R. Ford¹, Ibrahim Seven¹, and William J. Dupps, Jr^{1,3,4}

¹ Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA

- ² Department of Ophthalmology and Visual Sciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- ³ Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- ⁴ Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA

Purpose

To evaluate depth-resolved changes of corneal biomechanical properties in eyes with corneal ectasia after CXL using optical coherence elastography (OCE)

Methods

- 4 eyes of 4 subjects with prior diagnosis of corneal ectasia were prospectively enrolled
- Data collected prior to CXL and 3 months following CXL in the same eye
- CXL was performed according to Dresden protocol
- Optical Coherence Elastography used to image cornea with low-speed applanation deformation while monitoring applanation force
- Cross-correlation applied to track frame-by-frame 2-dimensional OCT displacements
- Slope of force versus local axial displacement during the deformation used to create a 2-D array of axial stiffness (k)

Optical Coherence Elastography

Figure 1. Left: schematic representation of the optical coherence elastography system. Right: picture of the prototype, with a focus on the transparent flat lens, force sensors, and translational stage. SS-OCT, swept-source optical coherence tomography system.

- k=f/d, where *f* is the force generated from progressive contact between the interface and the anterior cornea and *d* is the local cumulative displacement of the cornea derived from the OCT speckle pattern tracking
- K = defined as slope of a line fit to force/displacement data
- K values are calculated and compared between defined anterior and posterior regions of cornea (Ka = anterior stroma, Kp = posterior stroma)
- These values were expressed as a ratio to assess depth-dependent differences in axial stiffness. A ratio (ka /kp) value of 1 = equivalence between the axial stiffness in the anterior and posterior regions

Cole Eve Institute

Subject Characteristics

Subject	Age , year s	Diagnosis	Sex (M/F)	Spherical Equivalent MRx (D)	IOP (mmHg)	Km (D)	K _{max} (D)	TPCT (µm)
01	23	KCN	F	+1.88	9.0	51.8	69.5	408
02	26	KCN	М	+2.75	15.0	52.6	63.0	398
03	21	KCN	М	-0.63	16.0	43.5	51.2	495
04	49	Post-LASIK Ectasia	М	-1.75	9.5	43.6	64.3	390

Results

- Graphs generated for each subject to assess the force/displacement relationship as it evolves across compression sequence
- Allows for comparison of displacement values between anterior / posterior regions for any given point in time or force
- Permit assessment of depth-dependent differences in the loading behavior of the cornea

Results

Subject	Age <i>,</i> years	Eye	K₃/Kp Pre-CXL	K _a /K _p Post-CXL
01	23	OS	0.934	1.579
02	26	OD	1.044	1.235
03	21	OD	1.051	1.205
04	49	OS	1.087	1.349

- Results quantitatively support that CXL confers a selective stiffening in the anterior stroma
- Across all 4 subjects 34% 个 from baseline the ka/kp value

Conclusions

- Study has limitations only 4 subjects
 - Future, larger-scale studies will be valuable and important for confirming the findings post-CXL
- Ex vivo studies have demonstrated these post-CXL changes using destructive and non-destructive methods first report of in vivo data
- Study provides biomechanical evidence of a selective increase in anterior stromal stiffness properties following CXL
- OCE could be useful for evaluating and comparing biomechanical properties following refractive surgeries, various CXL protocols and improving the safety and predictability of these procedures

- Srinidhi Singuri
- William J. Dupps, MD, Phd

 Support: Grant from Research to Prevent Blindness to the Dept. of Ophthalmology of the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University (RPB1508DM)

